The effectiveness harvesting of microalgae (Spirulina platensis) with electrocoagulation method using different voltage

  • Aidil Fadli Ilhamdy Fisheries Product Technology Department, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University. Jl. Politeknik-Senggarang, Tanjungpinang 29111, Riau Islands, Indonesia.
  • Ginanjar Pratama Fisheries Department, Faculty of Agriculture, Sultan Ageng Tirtayasa University, Jl. Raya Jakarta Km.04 Pakupatan, Serang 42118, Banten, Indonesia
  • Jumsurizal Jumsurizal Fisheries Product Technology Department, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University. Jl. Politeknik-Senggarang, Tanjungpinang 29111, Riau Islands, Indonesia.
  • Raja Marwita Sari Putri Fisheries Product Technology Department, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University. Jl. Politeknik-Senggarang, Tanjungpinang 29111, Riau Islands, Indonesia.
  • Darma Saputra Fisheries Product Technology Department, Faculty of Marine Science and Fisheries, Raja Ali Haji Maritime University. Jl. Politeknik-Senggarang, Tanjungpinang 29111, Riau Islands, Indonesia.

Abstract

Research on laboratory scale Spirulina platensis cultivation in Indonesia has developed quite a lot, however, several obstacles occur at harvest time, ranging from high prices and a very long time. Therefore this study aims to determine the effectiveness of the use of electrocoagulation in harvesting S. platensis using different voltage. The research phase included microalgae cultivation, electrocoagulation process, and harvesting of S. platensis, then continued with an analysis of biomass S. platensis, proximate composition, and water quality (pH, temperature, and Ferro (Fe) content). The treatment of electrocoagulation method harvesting of microalgae with voltages 0, 5, 10, and 15 volts (F0, F1, F2, and F3, respectively) were applied in this study. The best biomass harvested with electrocoagulation from F3 treatment was 6.05 gr/L. The proximate content of S. platensis with F0, F1, F2, and F3 treatments were moisture 24.58%, 12.32%, 15.36%, 17.8%, ash 26.56%, 22.42%, 26.53%, 34.99%, protein 34.24%, 30.26%, 25.81%, 21.67%, fat 1.27%, 0.86%, 1.65%, 0.65%, and carbohydrate 13.35%, 34.15%, 30.66%, 25.22%, respectively. The water quality result showed with, F0, F1, F2, and F3 treatments were pH 7, 7, 9, 8, temperature 32°C, 32°C, 32°C, 34°C, Ferro (Fe) 0.1 mg/L, 8.01 mg/L, 12.58 mg/L, 12.29 mg/L, respectively. The best treatment with electrocoagulation method harvesting was F3.

Downloads

Download data is not yet available.

References

Addini I, Saputra D, Ilhamdy AF, Julianto T. (2017). Pertumbuhan mikroalga Spirulina platensis yang dikultur dengan media teknis. Jurnal Intek Akuakultur. 1(1): 51-52.

Al-Shannag M, Bani-Melhem K, Al-Anber Z, Al-Qodah Z. (2013). Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Separation Science and Technology. 48(4): 673-680. https://doi.org/10.1080/01496395.2012.707729.

Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Micek J, Sochor J, Jurikova T. (2014). Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules. 19(2): 2344-2360. https://doi.org/10.3390/molecules19022344.

[AOAC] Association of Official Analytical Chemist. (2007). Official of Analysis of the Association of Official Analytical of Chemist. Mayland (USA). The Association of Official Analytical of Chemist, Inc.

Barros AI, Gonçalves AL, Simões M, Pires JC. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews. 41: 1489-1500. https://doi.org/10.1016/j.rser.2014.09.037.

Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology. 102: 71-81. https://doi.org/10.1016/j.biortech.2010.06.159.

Gami B, Naik A, Patel B. (2011). Cultivation of Spirulina species in different liquid media. Journal of Algal Biomass Utilization. 2(3):15-26.

Ghernaout D. (2019). Electrocoagulation process for microalgal biotechnology: A review. Applied Engineering. 3(2): 85-94. https://doi.org/10.11648/j.ae.20190302.12.

Ghosh D, Solanki H, Purkait MK. (2008). Removal of Fe (II) from tap water by electrocoagulation technique. Journal of Hazardous Materials. 155(1): 135-143. https://doi.org/10.1016/j.jhazmat.2007.11.042.

Grima EM, Belarbi EH, Acien FG, Medina AR, Chisti Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances. 20: 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2.

Hadiyanto H, Hendroko R. (2014). Integrated biogas-microalgae from waste waters as the potential biorefinery sources in Indonesia. Energy Procedia. 47: 143-148. https://doi.org/10.1016/j.egypro.2014.01.207.

Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 404: 1-21. https://doi.org/10.1016/j.desal.2016.10.011.

Holt PK, Barton GW, Wark M, Mitchell CA. (2002). A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 211: 233-248. https://doi.org/10.1016/S0927-7757(02)00285-6.

Ilhamdy AF, Nurhayati T, Setyaningsih I, Santosa DA. (2017). Optimization process of ethanol production from microalgae Chlamydomonas sp. ICBB 9113, ICBB 9114, and Synechococcus sp. ICBB 9111. Asian Journal of Environmental Biotechnology. 1: 10-18.

Ishiwatari N, Mkia F, Noboru S. (2013). Effect protein denaturation degree on texture and water state of cooked meat. Journal of Food Engineering. 117: 361-369. https://doi.org/10.1016/j.jfoodeng.2013.03.013.

Koswojo R, Utomo RP, Ju YH, Ayucitra A, Soetaredjo FE, Sunarso J, Ismadji S. (2010). Acid green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science. 48(1): 81-86. https://doi.org/10.1016/j.clay.2009.11.023.

Milledge JJ, Heaven S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio-Technology. 12(2): 165-178. https://doi.org/10.1007/s11157-012-9301-z.

Mollah MYA, Schennach R, Parga JR, Cocke DL. (2001). Electrocoagulation (EC): Science and applications. Journal of Hazardous Materials. 84(1): 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5.

Ni’am M, Othman F, Sohaili J, Fauzia Z. (2007). Removal of COD and turbidity to improve wastewater quality using electrocoagulation technique. The Malaysian Journal of Analytical Science. 11(1): 198-205.

Pohl P, Ohlhase MK, Rautwurst SK, Baasch KLK. (1987). An inexpensive inorganic medium for the mass cultivation of freshwater microalgae. Phytochemistry. 26(6):1657-1659. https://doi.org/10.1016/S0031-9422(00)82264-5.

Promya J, Traichaiyaporn S, Deming R. (2008). Phytoremediation of kitchen wastewater by Spirulina platensis (Nordstedt) Geiteler : pigment content, production variable cost and nutritional value. Maejo International Journal of Science and Technology. 20(1): 159-171.

Puspanadan S, Wong XJ, Lee CK. (2018). Optimization of freshwater microalgae, Arthrospira sp. (Spirulina) for high starch production. International Food Research Journal. 25(3): 1266-1272.

Samek D, Mišurcová L, Machù L, Buòka F, Fišera M. (2013). Influencing of amino acid composition of green freshwater algae and cyanobacterium by methods of cultivation. Turkish Journal of Biochemistry. 38(4): 360-368. https://doi.org/10.5505/tjb.2013.42104.

Siahaan MA. (2019). Analisis kadar besi (Fe) pada air sumur gali penduduk wilayah Komplek Rahayu, Kelurahan Mabar Hilir, Kecamatan Medan Deli, Kota Medan. Jurnal Kimia Saintek dan Pendidikan. 3(1): 19-22.

Sim TS, Goh A, Becker EW. (1988). Comparison of centrifugation, dissolved air flotation and drum filtration technique for harvesting sewage-grown algae. Biomass. 16: 51-62. https://doi.org/10.1016/0144-4565(88)90015-7.

Singh G, Patidar SK. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management. 217: 499-508. https://doi.org/10.1016/j.jenvman.2018.04.010.

Soni RA, Sudhakar K, Rana RS. (2017). Spirulina-From growth to nutritional product: A review. Trends In Food Science & Technology. 69: 157-171. https://doi.org/10.1016/j.tifs.2017.09.010.

Spolaore P, Cassan CJ, Duran E, Isambert A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 101(2): 87-96. https://doi.org/10.1263/jbb.101.87.

Steel RGD, Torrie JH. (1991). Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik. Jakarta: PT Gramedia Pustaka Utama.

Uduman N, Bourniquel V, Danquah MK, Hoadley AFA. 2011. A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chemical Engineering Journal. 174: 249-257. https://doi.org/10.1016/j.cej.2011.09.012.

Yilmaz HK. (2012). The proximate composition and growth of Spirulina platensis biomass (Arthrospira platensis) at different temperatures. Journal of Animal and Veterinary Advances. 11(8): 1135-1138. https://doi.org/10.3923/javaa.2012.1135.1138.

Zhu C, Zhai X, Jia j, Wang J, Han D, Li Y, Tang Y, Chi Z. (2018). Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce β-carotene. Algal Research. 35: 319-324. https://doi.org/10.1016/j.algal.2018.08.035.
How to Cite
ILHAMDY, Aidil Fadli et al. The effectiveness harvesting of microalgae (Spirulina platensis) with electrocoagulation method using different voltage. Jurnal Sumberdaya Akuatik Indopasifik, [S.l.], v. 5, n. 4, p. 363-372, sep. 2021. ISSN 2550-0929. Available at: <https://ejournalfpikunipa.ac.id/index.php/JSAI/article/view/183>. Date accessed: 06 dec. 2021. doi: https://doi.org/10.46252/jsai-fpik-unipa.2021.Vol.5.No.4.183.
Statistik Abstract view : 95 times
Statistik PDF Views : 50 times
Keywords:
electrocoagulation, harvesting method, Spirulina platensis
Published
2021-09-22
Section
Research Articles

Most read articles by the same author(s)