Effect of urea on the growth and nutritional content of Arthrospira (Spirulina platensis)

Authors

  • Nasrullah Bai Arifin 1Program studi Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia, 2Research group Aquatic Biofloc, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia
  • Ahmad Pradana Rachmadian Putra Program studi Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia
  • Yuni Widyawati 1Program studi Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia, 2Research group Aquatic Biofloc, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia
  • Anik Martinah Hariati 1Program studi Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia, 2Research group Aquatic Biofloc, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya, Malang, 65145, Indonesia

DOI:

https://doi.org/10.46252/jsai-fpik-unipa.2023.Vol.7.No.4.276

Keywords:

media, microalgae, Spirulina platensis, urea, nutrition, growth

Abstract

Spirulina platensis is a highly nutritious cyanobacterial microalga. This microalga is rich in protein, vitamins, minerals and antioxidants. The use of media and cultivation methods that are not appropriate can affect the nutritional content of this microalgae. This study aims to evaluate the effect of urea on growth, biomass production, nutrient content and pigments of S. platensis on an outdoor scale. Technical media such as urea are used instead of nitrate in standard media (zarrouk). This study used four treatments with three replications. The treatments used were different doses of urea, namely 0.1 g/L, 0.4 g/L, 0.7 g/L, and 1 g/L. The results showed that the use of urea affected the growth and nutritional content of S. platensis. The use 0.4 g/L urea producued comparable results than that of nitrate as nitrogen source. However, phycocyanin content was still lower than nitrate-based media. Inconclusion that urea was potential alterative nitrogen source for spirulina cultivation.

Downloads

Download data is not yet available.

References

Adani, N. G., Hendrarto, B., & Muskanonfola, M. R. (2013). Kesuburan Perairan Ditinjau dari Kandungan Klorofil-a Fitoplankton: Studi Kasus di Sungai Wedung, Demak. Management of Aquatic Resources Journal (MAQUARES), 2(4), 38-45.

Ak, I., Cirik, S., & Goksan, T. (2011). Effect of light intensity, salinity and temperature on growth in Camalt1 strain of Dunaliella viridis Teodoresco from Turkey. Journal of Biological Sciences, 8(8), 1356–1359.

Bennett, A., & Bogorad, L. (1987). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58, 419–435.

Dianursanti, Indraputri, C. M., & Taurina, Z. (2018, February). Optimization of phycocyanin extraction from microalgae Spirulina platensis by sonication as antioxidant. In AIP Conference Proceedings (Vol. 1933, No. 1, p. 030013). AIP Publishing LLC.

Hariyati, R. (2008). Pertumbuhan dan biomassa Spirulina sp. dalam skala laboratoris. Bioma. 10(1): 19-22.

Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., L.R. Mur, A., & Wijffels, R. H. (1999). Specific growth rates of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13 -87s. Journal of Biotechnology, 70, 323–333.

Kumbhar, A. N., He, M., Rajper, A. R., Memon, K. A., Rizwan, M., Nagi, M., ... & Wang, C. (2020). The use of urea and kelp waste extract is a promising strategy for maximizing the biomass productivity and lipid content in Chlorella sorokiniana. Plants, 9(4), 463.

Kurniawati, R., Praharyawan, S., & Panji, T. (2020). Optimasi nisbah natrium nitrat: urea dan konsentrasi nitrogen pada kultivasi Spirulina platensis untuk produksi protein dan pigmen fikosianin. Menara Perkebunan. 88(2): 130-140.

Li, X., Manuel, J., Slavens, S., Crunkleton, D. W., & Johannes, T. W. (2021). Interactive effects of light quality and culturing temperature on algal cell size, biomass doubling time, protein content, and carbohydrate content. Applied Microbiology and Biotechnology. 105(2): 587-597.

Lichtenthaler, H. . (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Journal of Methods Enzymology, 148, 350–382.

Maulana, P. M., Karina, S., & Mellisa, S. (2017). Pemanfaatan Fermentasi Limbah Cair Tahu Menggunakan Em4 Sebagai Alternatif Nutrisi Bagi Mikroalga Spirulina sp. Jurnal Ilmiah Mahasiswa Kelautan dan Perikanan Unsyiah. 2(1): 104-112.

Muliani, M., Ayuzar, E., & Amri, M. C. (2018). Pengaruh pemberian pupuk kascing (bekas cacing) yang difermentasi dengan dosis yang berbeda dalam kultur Spirulina sp. Acta Aquatica: Aquatic Sciences Journal. 5(1): 30-35.

Mutia, S., Nedi, S., & Elizal, E. (2021). Effect of Nitrate and Phospate Concentration on Spirulina Platensis With Indoor Scale. Asian Journal of Aquatic Scie`nces. 4(1): 29-35.

Piu, N. J. F., Koniyo, Y., & Salam, A. (2022). The Effect of Salinity and Light on the Density of Spirulina platensis, by using Walne Media. European Multidisciplinary Journal of Modern Science. 1-16.

Putri, S. A., & Sopandi, T. (2012). Konsumsi Nitrogen Dan Karbon Oleh Spirulina platensis Dari Kotoran Burung Puyuh Sebagai Media Kultivasi. STIGMA: Jurnal Matematika dan Ilmu Pengetahuan Alam Unipa. 14(1): 1-9.

Ribeiro, D. M., Roncaratti, L. F., Possa, G. C., Garcia, L. C., Cançado, L. J., Williams, T. C. R., & Brasil, B. D. S. A. F. (2020). A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate based fertilizers. Bioresource Technology Reports, 9, 100354.

Ridlo, A., Sedjati, S., & Supriyantini, E. (2016). Aktivitas anti oksidan fikosianin dari Spirulina sp. Menggunakan metode transfer elektron dengan DPPH (1, 1-difenil-2-pikrilhidrazil). Jurnal Kelautan Tropis. 18(2) : 58-63.

Ritchie, R. . (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89, 27–41

Sopandi, T., Rohmah, S., & Agustina, S. A. T. (2020). AJAB. Asian J Agric & Biol. 8(2): 158-167.

Seenuvasan, M., Kumar, K. S., Abinandan, S., Anugraha, C., Umamageshwari, K., Kumar, M. A., & Balaji, N. (2014). Statistical analysis on stress induced lipid accumulation along with the major cell components of Chlorella sp. International Journal of ChemTech Research, 6(9), 4186-4192.

Silva Júnior, J. M. D., Rodrigues, M., Castro, E. M. D., Bertolucci, S. K. V., & Pasqual, M. (2013). Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea. Acta Scientiarum. Agronomy, 35, 65-72.

Sukadarti, S., Murni, S. W., & Nur, M. A. (2016). Peningkatan phycocyanin pada Spirulina platensis dengan media limbah virgin coconut oil pada photobioreactor tertutup. Eksergi. 13(2): 1-6.

Tinambunan, J., Wijayanti, M., & Jubaedah, D. (2017). Pertumbuhan populasi Spirulina platensis dalam media limbah cair bahan olahan kecap dan media zarrouk. Jurnal Akuakultur Rawa Indonesia. 5(2): 209-219.

Utomo, A. N. S., Julyantoro, P. G. S., & Dewi, A. P. W. K. (2020). Pengaruh Penambahan Air Cucian Beras terhadap Laju Pertumbuhan Spirulina sp. Current Trends in Aquatic Science III. 1 :15-22.

Published

2023-12-14

How to Cite

Arifin, N. B., Putra, A. P. R., Widyawati, Y., & Hariati, A. M. (2023). Effect of urea on the growth and nutritional content of Arthrospira (Spirulina platensis). Jurnal Sumberdaya Akuatik Indopasifik, 7(4), 493–504. https://doi.org/10.46252/jsai-fpik-unipa.2023.Vol.7.No.4.276

Issue

Section

Articles